Научный форум dxdy. Кольца: определение, свойства, примеры §5. Поле комплексных чисел. Операции над комплексными

Пусть (K,+, ·) - кольцо. Так как (K, +) - абелева группа, учитывая свойства групп получим

СВ-ВО 1 . Во всяком кольце (K,+, ·) имеется единственный нулевой элемент 0 и для всякого a ∈ K имеется единственный противоположный ему элемент −a.

СВ-ВО 2. ∀ a, b, c ∈ K (a + b = a + c ⇒ b = c).

СВ-ВО 3. Для любых a, b ∈ K в кольце K существует единственная разность a − b, причем a − b = a + (−b). Таким образом, в кольце K определена операция вычитания, при этом она обладает свойствами 1′-8′.

СВ-ВО 4 . Операция умножения в K дистрибутивна относительно операции вычитания, т.е. ∀ a, b, c ∈ K ((a − b)c = ac − bc ∧ c(a − b) = ca − cb).

Док-во. Пусть a, b, c ∈ K. Учитывая дистрибутивность операции · в K относительно операции + и определение разности элементов кольца, получим (a − b)c + bc = ((a − b) + b)c = ac, откуда по определению разности следует, что (a − b)c = ac − bc.

Аналогично доказывается правый закон дистрибутивности операции умножения относительно операции вычитания.

СВ-В 5. ∀ a ∈ K a0 = 0a = 0.

Доказательство. Пусть a ∈ K и b-произвольный элемент из K. Тогда b − b = 0 и поэтому, учитывая предыдущее свойство, получим a0 = a(b − b) = ab − ab = 0.

Аналогично доказывается, что 0a = 0.

СВ-ВО 6. ∀ a, b ∈ K (−a)b = a(−b) = −(ab).

Доказательство. Пусть a, b ∈ K. Тогда (−a)b + ab = ((−a) + a)b =

0b = 0. Значит, (−a)b = −(ab).

Аналогично доказывается равенство a(−b) = −(ab).

СВ-ВО 7. ∀ a, b ∈ K (−a)(−b) = ab.

Доказательство. В самом деле, применяя дважды предыдущее свойство, получим (−a)(−b) = −(a(−b)) = −(−(ab)) = ab.

ЗАМЕЧАНИЕ. Свойства 6 и 7 называют правилами знаков в кольце.

Из дистрибутивности операции умножения в кольце K относительно операции сложения и свойств 6 и 7 вытекает следующее

СВ-ВО 8. Пусть k, l-произвольные целые числа. Тогда ∀ a, b ∈ K (ka)(lb) = (kl)ab.

Подкольцо

Подкольцом кольца (K,+, ·) называется подмножество H множества K, которое замкнуто относительно операций + и ·, определенных в K, и само является кольцом относительно этих операций.

Примеры подколец:

Так, Z -подкольцо кольца (Q,+, ·), Q-подкольцо кольца (R,+, ·), Rn×n -подкольцо кольца (Cn×n,+, ·), Z[x]-подкольцо кольца (R[x],+, ·), D -подкольцо кольца (C,+, ·).

Во всяком кольце (K,+, ·) само множество K, а также одноэлементное подмножество {0} являются подкольцами кольца (K,+, ·). Это так называемые тривиальные подкольца кольца (K,+, ·).

Простейшие свойства подколец.

Пусть H - подкольцо кольца (K,+, ·), т.е. (H,+, ·) само является кольцом. Значит, (H, +)-группа, т.е. H -подгруппа группы (K, +). Поэтому справедливы следующие утверждения.

СВ-ВО 1. Нулевой элемент подкольца H кольца K совпадает с нулевым элементом кольца K.

СВ-ВО 2 . Для всякого элемента a подкольца H кольца K противоположный ему элемент в H совпадает с −a, т.е. с противоположным ему элементом в K.

СВ-ВО 3. Для любых элементов a и b подкольца H их разность в H совпадает с элементом a − b, т.е. с разностью этих элементов в K.

Признаки подкольца.

ТЕОРЕМА 1 (первый признак подкольца).

Непустое подмножество H кольца K с операциями + и · является подкольцом кольцаK тогда итолькотогда, когда оно удовлетворяет следующим условиям:

∀ a, b ∈ H a + b ∈ H, (1)

∀ a ∈ H − a ∈ H, (2)

∀ a, b ∈ H ab ∈ H. (3)

Необходимость. Пусть H - подкольцо кольца (K,+, ·). Тогда H -подгруппа группы (K, +). Поэтому по первому признаку подгруппы (в аддитивной формулировке), H удовлетворяет условиям (1) и (2). Кроме того, H замкнуто относительно операции умножения, определенной в K, т.е. H

удовлетворяет и условию (3).

Достаточность. Пусть H ⊂ K, H 6= ∅ и H удовлетворяет условиям (1) − (3). Из условий (1) и (2) по первому признаку подгруппы следует, что H -подгруппа группы (K, +), т.е. (H, +)-группа. При этом, так как (K, +)-абелева группа, (H, +) также абелева. Кроме того, из условия (3) следует, что умножение является бинарной операцией на множестве H. Ассоциативность операции · в H и ее дистрибутивность относительно операции + следуют из того, что такими свойствами обладают операции + и · в K.

ТЕОРЕМА 2 (второй признак подкольца).

Непустое подмножество H кольца K с операциями + и · является

подкольцом кольца K т. и т. т, когда оно удовлетворяет следующим условиям:

∀ a, b ∈ H a − b ∈ H, (4)

∀ a, b ∈ H ab ∈ H. (5)

Доказательство этой теоремы аналогично доказательству теоремы 1.

При этом используется теорема 2′ (второй признак подгруппы в аддитивной формулировке) и замечание к ней.

7.Поле (определение, виды, свойства, признаки).

Полем называется коммутативное кольцо с единицей e не равно 0, в котором всякий элемент, отличный отнуля имеет обратный.

Классическими примерами числовых полей являются поля (Q,+, ·), (R,+, ·), (C,+, ·).

СВОЙСТВО 1. Во всяком поле F справедлив закон сокращения

на общий множитель, отличный от нуля, т.е.

∀ a, b, c ∈ F (ab = ac ∧ a не равно 0 ⇒ b = c).

СВОЙСТВО 2. Во всяком поле F нет делителей нуля.

СВОЙСТВО 3. Кольцо (K,+, ·) является полем тогда и только

тогда, когда множество K \ {0} есть коммутативная группа относительно операции умножения.

СВОЙСТВО 4 . Конечное ненулевое коммутативное кольцо (K,+, ·) без делителей нуля является полем.

Частное элементов поля.

Пусть (F,+, ·)-поле.

Частным элементов a и b поля F, где b не равно 0,

называется такой элемент c ∈ F, что a = bc.

СВОЙСТВО 1. Для любых элементов a и b поля F, где b не равно 0, существует единственное частное a/b, причем a/b= ab−1.

СВОЙСТВО 2. ∀ a ∈ F \ {0}

a/a= e и ∀ a ∈ F a/e= a.

СВОЙСТВО 3. ∀ a, c ∈ F ∀ b, d ∈ F \ {0}

a/b=c/d ⇔ ad = bc.

СВОЙСТВО 4. ∀ a, c ∈ F ∀ b, d ∈ F \ {0}

СВОЙСТВО 5. ∀ a ∈ F ∀ b, c, d ∈ F \ {0}

(a/b)/(c/d)=ad/bc

СВОЙСТВО 6. ∀ a ∈ F ∀ b, c ∈ F \ {0}

СВОЙСТВО 7. ∀ a ∈ F ∀ b, c ∈ F \ {0}

СВОЙСТВО 8. ∀ a, b ∈ F ∀ c ∈ F \ {0}

Поле F, единица которого имеет конечный порядок p в группе (F, +)p.

Поле F единица, которого имеет бесконечный порядок в группе (F, +), называется полем характеристики 0.

8. Подполе (определение, виды, свойства, признаки)

Подполем поля (F,+, ·) называется подмножество S множества F, которое замкнуто относительно операций + и ·, определенных в F, и само является полем относительно этих операций.

Приведем некоторые примеры подполей Q-подполе поля (R,+, ·);

R-подполе поля (C,+, ·);

справедливы следующие утверждения.

СВОЙСТВО 1. Нулевой элемент подполя S поля F совпадает с

нулевым элементом поля F.

СВОЙСТВО 2 . Для всякого элемента a подполя S поля F противоположный ему элемент в S совпадает с −a, т.е. с противоположным ему элементом в F.

СВОЙСТВО 3. Для любых элементов a и b подполя S поля F их

разность в S совпадает с a−b т.е. с разностью этих элементов в F.

СВОЙСТВО 4. Единица подполя S поля F совпадает с единицей

e поля F.

СВОЙСТВО 5 . Для всякого элемента a подполя S поля F, от-

личного от нуля, обратный к нему элемент в S совпадает с a−1, т.е. с элементом, обратным к a в F.

Признаки подполя.

ТЕОРЕМА 1 (первый признак подполя).

Подмножество H поля F c операциями +, ·, содержащее ненулевой

(F,+, ·)

∀ a, b ∈ H a + b ∈ H, (1)

∀ a ∈ H − a ∈ H, (2)

∀ a, b ∈ H ab ∈ H, (3)

∀ a ∈ H \ {0} a−1 ∈ H. (4)

ТЕОРЕМА2 (второй признак подполя).

Подмножество H поля F c операциями +, ·, содержащее ненулевой

элемент, является подполем поля (F,+, ·) тогда и только тогда, когда оно удовлетворяет следующим условиям:

∀ a, b ∈ H a − b ∈ H, (5)

∀ a ∈ H ∀ b ∈ H\{0} a/b ∈ H. (6)

10. Отношение делимости в кольце Z

Утверждение: для любых элементов a,b,c коммутативного кольца на множестве R, справедливы следующие импликации:

1) а|b, b|c => a|c

2) a|b, a|c => a| (b c)

3) a|b => a|bc

для любого a, b Z справедливо:

2) a|b, b≠0 => |a|≤|b|

3)a|b и b|a ó |a|=|b|

Разделить с остатком целое число а на целое число b , значит найти такие целые числа q и r, что можно представить a=b*q + r, 0≤r≥|b|, где q – неполное частное, r- остаток

Теорема: Если a и b Z , b≠0, то а можно разделить на b с остатком,причем неполное частное и остаток определяются однозначно.

Следствие,если a и b Z , b≠0, то b|a ó

11. НОД и НОК

Наибольший общий делитель(НОД) чисел Z называется некоторое число d, удовлетворяющее следующим условиям

1) d является общим делителем т.е. d| , d| …d|

2) d делится на любой общий делитель чисел т.е. d| , d| …d| => d| , d| …d|

Аннотация: В данной лекции рассматриваются понятия колец. Приведены основные определения и свойства элементов кольца, рассмотрены ассоциативные кольца. Рассмотрен ряд характерных задач, доказаны основные теоремы, а также приведены задачи для самостоятельного рассмотрения

Кольца

Множество R с двумя бинарными операциями (сложением + и умножением ) называется ассоциативным кольцом с единицей , если:

Если операция умножения коммутативна, то кольцо называется коммутативным кольцом. Коммутативные кольца являются одним из главных объектов изучения в коммутативной алгебре и алгебраической геометрии.

Замечания 1.10.1 .

Примеры 1.10.2 (примеры ассоциативных колец) .

Мы уже убедились, что группа вычетов (Z n ,+)={C 0 ,C 1 ,...,C n-1 }, C k =k+nZ , по модулю n с операцией сложения , является коммутативной группой (см. пример 1.9.4, 2)).

Определим операцию умножения, полагая . Проверим корректность этой операции . Если C k =C k" , C l =C l" , то k"=k+nu , l"=l+nv , , и поэтому C k"l" =C kl .

Так как (C k C l)C m =C (kl)m =C k(lm) =C k (C l C m), C k C l =C kl =C lk =C l C k , C 1 C k =C k =C k C 1 , (C k +C l)C m =C (k+l)m =C km+lm =C k C m +C l C m , то является ассоциативным коммутативным кольцом с единицей C 1 кольцом вычетов по модулю n ).

Свойства колец (R,+,.)

Лемма 1.10.3 (бином Ньютона) . Пусть R - кольцо с 1 , , . Тогда:

Доказательство.

Определение 1.10.4 . Подмножество S кольца R называется подкольцом , если:

а) S - подгруппа относительно сложения в группе (R,+) ;

б)для имеем ;

в)для кольца R с 1 предполагается, что .

Примеры 1.10.5 (примеры подколец) .

Задача 1.10.6 . Описать все подкольца в кольце вычетов Z n по модулю n .

Замечание 1.10.7 . В кольце Z 10 элементы, кратные 5 , образуют кольцо с 1 , не являющееся подкольцом в Z 10 (у этих колец различные единичные элементы).

Определение 1.10.8 . Если R - кольцо, и , , ab=0 , то элемент a называется левым делителем нуля в R , элемент b называется правым делителем нуля в R .

Замечание 1.10.9 . В коммутативных кольцах, естественно, нет различий между левыми и правыми делителями нуля.

Пример 1.10.10 . В Z , Q , R нет делителей нуля.

Пример 1.10.11 . Кольцо непрерывных функций C имеет делители нуля. Действительно, если


то , , fg=0 .

Пример 1.10.12 . Если n=kl , 1

Лемма 1.10.13 . Если в кольце R нет (левых) делителей нуля, то из ab=ac , где , , следует, что b=c (т. е. возможность сокращать на ненулевой элемент слева, если нет левых делителей нуля; и справа, если нет правых делителей нуля).

Доказательство. Если ab=ac , то a(b-c)=0 . Так как a не является левым делителем нуля, то b-c=0 , т. е. b=c .

Определение 1.10.14 . Элемент называется нильпотентным , если x n =0 для некоторого . Наименьшее такое натуральное число n называется степенью нильпотентности элемента .

Ясно, что нильпотентный элемент является делителем нуля (если n>1 , то , ). Обратное утверждение неверно (в Z 6 нет нильпотентных элементов, однако 2 , 3 , 4 - ненулевые делители нуля).

Упражнение 1.10.15 . Кольцо Z n содержит нильпотентные элементы тогда и только тогда, когда n делится на m 2 , где , .

Определение 1.10.16 . Элемент x кольца R называется идемпотентом , если x 2 =x . Ясно, что 0 2 =0 , 1 2 =1 . Если x 2 =x и , , то x(x-1)=x 2 -x=0 , и поэтому нетривиальные идемпотенты являются делителями нуля.

Через U(R) обозначим множество обратимых элементов ассоциативного кольца R , т. е. тех , для которых существует обратный элемент s=r -1 (т. е. rr -1 =1=r -1 r ).

Краткое описание

Определение. Кольцом называется алгебра К = ‹К, +, -, ·, 1› типа (2, 1, 2, 0), главные операции которой удовлетворяют следующим условиям:


Прикрепленные файлы: 1 файл

Кольцо. Определение. Примеры. Простейшие свойства колец. Гомоморфизм и изоморфизм колец.

Определение. Кольцом называется алгебра К = ‹К, +, -, ·, 1› типа (2, 1, 2, 0), главные операции которой удовлетворяют следующим условиям:

  1. алгебра ‹К, +, -› есть абелева группа;
  2. алгебра ‹К, ·, 1› есть моноид;
  3. умножение дистрибутивно относительно сложения, то есть для любых элементов a, b, c из К

(a + b) · c = a · c + b · c, c· (a + b) = c · a + c · b.

Основное множество К кольца К обозначается также через |К|. Элементы множества К называются элементами кольца К.

Опред. Группа ‹К, +, -› называется аддитивной группой кольца К. Нуль этой группы, то есть нейтральный элемент относительно сложения, называется нулем кольца и обозначается 0 или 0 К.

Опред. Моноид ‹К, ·, 1› называется мультипликативным моноидом кольца К. Элемент 1, обозначаемый также через 1 К, являющийся нейтральным относительно умножения, называется единицей кольца К.

Кольцо К называется коммутативным, если a · b = b · a для любых элементов a , b кольца. Кольцо К называется нулевым, если |К| = {0 К }.

Опред. Кольцо К называется областью целостности, если оно коммутативно, 0 К ≠ 1 К и для любых a, b Î К из a· b = 0 следует a = 0 или b = 0.

Опред. Элементы a и b кольца К называются делителями нуля, если a ≠ 0, b ≠ 0 или ba = 0. (Любая область целостности не имеет делителей нуля.)

Пример. Пусть К – множество всех действительных функций, определенных на множестве R действительных чисел. Сумма f + g, произведение f · g, функция

f(-1) и единичная функция 1 определяются: (f + g) (х) = f (х) + g(х);

(f · g)(х) = f(х) · g(х); (–f) (х) =–f (х); 1(х) = 1. Непосредственная проверка показывает, что алгебра ‹К, +, -, ·, 1› является коммутативным кольцом.

Простейшие свойства. Пусть К – кольцо. Так как алгебра ‹К, +, -› есть абелева группа, то для любых элементов a, b, из К уравнение b + x = a имеет единственное решение a + (-b), которое обозначается также через a – b.

  1. если a + b = a, то b = 0;
  2. если a + b = 0, то b = -a;
  3. – (-a) = a;
  4. 0 · a = a · 0 = a;
  5. (-a)b = a(-b) = -(ab);
  6. (-a)(-b) = a · b;
  7. (a – b)c = ac – bc и c(a – b) = ca – cb.

Пусть К = ‹К, +, -, ◦, 1› и К` = ‹К`, +, -, ·, 1`› - кольца. Говорят, что отображение h множества К в К` сохраняет главные операции кольца К, если выполнены условия:

  1. h(a+b)=h(a)+h(b) для любых a, b из кольца К;
  2. h(-a)=-h(a) для любого a из К;
  3. h(a·b) = h(a)◦h(b) для любых a, b из К;
  4. h(1) = 1`.

Опред. Гомоморфизмом кольца К в (на) кольцо К` называется отображение множества К в (на) К`, сохраняющее все главные операции кольца К. Гомоморфизм кольца К на К` называется эпиморфизмом.

Опред. Гомоморфизм h кольца К на кольцо К` называется изоморфизмом, если h является инъективным отображением множества K на К`. Кольца К и К` называются изоморфными, если существуют изоморфизм кольца К на кольцо К`.


В различных разделах математики, а также в применении математики в технике, часто встречается ситуация, когда алгебраические операции производятся не над числами, а над объектами иной природы. Например сложение матриц, умножение матриц, сложение векторов, операции над многочленами, операции над линейными преобразованиями и т.д.

Определение 1. Кольцом называется множество математических объектов, в котором определены два действия − "сложение" и "умножение", которые сопоставляют упорядоченным парам элементов их "сумму" и "произведение", являющиеся элементами того же множества. Данные действия удовлетворяют следующим требованиям:

1. a+b=b+a (коммутативность сложения).

2. (a+b)+c=a+(b+c) (ассоциативность сложения).

3. Существует нулевой элемент 0 такой, что a +0=a , при любом a .

4. Для любого a существует противоположный элемент −a такой, что a +(−a )=0.

5. (a+b)c=ac+bc (левая дистрибутивность).

5". c(a+b)=ca+cb (правая дистрибутивность).

Требования 2, 3, 4 означают, что множество математических объектов образует группу , а вместе с пунктом 1 мы имеем дело с коммутативной (абелевой) группой относительно сложения.

Как видно из определения, в общем определении кольца на умножения не накладывается никаких ограничений, кроме дистрибутивности со сложением. Однако при различных ситуациях возникает необходимость рассматривать кольца с дополнительными требованиями.

6. (ab)c=a(bc) (ассоциативность умножения).

7. ab=ba (коммутативность умножения).

8. Существование единичного элемента 1, т.е. такого a ·1=1·a=a , для любого элемента a .

9. Для любого элемента элемента a существует обратный элемент a −1 такой, что aa −1 =a −1 a= 1.

В различных кольцах 6, 7, 8, 9 могут выполняться как отдельно так и в различных комбинациях.

Кольцо называется ассоциативным, если выполняется условие 6, коммутативным, если выполнено условие 7, коммутативным и ассоциативным если выполнены условия 6 и 7. Кольцо называется кольцом с единицей, если выполнено условие 8.

Примеры колец:

1. Множество квадратных матриц.

Действительно. Выполнение пунктов 1-5, 5" очевидна. Нулевым элементом является нулевая матрица. Кроме этого выполняется пункт 6 (ассоциативность умножения), пункт 8 (единичным элементом является единичная матрица). Пункты 7 и 9 не выполняются т.к. в общем случае умножение квадратных матриц некоммутативна, а также не всегда существует обратное к квадратной матрице.

2. Множество всех комплексных чисел.

3. Множество всех действительных чисел.

4. Множество всех рациональных чисел.

5. Множество всех целых чисел.

Определение 2. Всякая система чисел, содержащая сумму, разность и произведение любых двух своих чисел, называется числовым кольцом .

Примеры 2-5 являются числовыми кольцами. Числовыми кольцами являются также все четные числа, а также все целые числа делящихся без остатка на некоторое натуральное число n. Отметим, что множество нечетных чисел не является кольцом т.к. сумма двух нечетных чисел является четным числом.